Back to all genres

Series in Ai

Books in Ai

Artificial Intelligence

Artificial Intelligence

The applications of Artificial Intelligence lie all around us; in our homes, schools and offices, in our cinemas, in art galleries and - not least - on the Internet. The results of Artificial Intelligence have been invaluable to biologists, psychologists, and linguists in helping to understand the processes of memory, learning, and language from a fresh angle. As a concept, Artificial Intelligence has fuelled and sharpened the philosophical debates concerning the nature of the mind, intelligence, and the uniqueness of human beings. In this Very Short Introduction , Margaret A. Boden reviews the philosophical and technological challenges raised by Artificial Intelligence, considering whether programs could ever be really intelligent, creative or even conscious, and shows how the pursuit of Artificial Intelligence has helped us to appreciate how human and animal minds are possible. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Brainmakers

Brainmakers

An illuminating, lucid account of scientific work on artificial intelligence explores the groundbreaking research being done in robotics and neuroscience, showing how thinking machines may surpass the human brain's powers. 30,000 first printing. Tour.

Business Modeling and Data Mining

Business Modeling and Data Mining

Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations· Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations· Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data· Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.

Data Mining

Data Mining

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at cs.waikato.ac.nz/~ml/weka/book.html. It contains - Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book - Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book - Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. - Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects - Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface - Includes open-access online courses that introduce practical applications of the material in the book

Data Mining, Southeast Asia Edition

Data Mining, Southeast Asia Edition

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects Complete classroom support for instructors at www.mkp.com/datamining2e companion site

Data Preparation for Data Mining Using SAS

Data Preparation for Data Mining Using SAS

Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little “how to” information? And are you, like most analysts, preparing the data in SAS?This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation of each step in SAS. In addition, business applications of data mining modeling require you to deal with a large number of variables, typically hundreds if not thousands. Therefore, the book devotes several chapters to the methods of data transformation and variable selection. A complete framework for the data preparation process, including implementation details for each step. The complete SAS implementation code, which is readily usable by professional analysts and data miners. A unique and comprehensive approach for the treatment of missing values, optimal binning, and cardinality reduction. Assumes minimal proficiency in SAS and includes a quick-start chapter on writing SAS macros.

The Emperor's New Mind

The Emperor's New Mind

For many decades, the proponents of `artificial intelligence' have maintained that computers will soon be able to do everything that a human can do. In his bestselling work of popular science, Sir Roger Penrose takes us on a fascinating tour through the basic principles of physics, cosmology, mathematics, and philosophy to show that human thinking can never be emulated by a machine. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.

The Simulation Theory of Consciousness

The Simulation Theory of Consciousness

Have you ever wondered what our robots might be thinking? What do our cars experience as they use their sensors to observe the world around them and increasingly take over our driving duties? When we play computer games, are we the only ones who experience the simulated virtual worlds they create? More generally, are our computer-driven creations sentient with their own internal, subjective streams of conscious? Named a distinguished engineer by the Association of Computing Machinery, Donald Firesmith uses his 40 years of experience developing complex, software-intensive systems toargue that the answer is yes. The many functional analogies between humans and cyber-physical systems produce a strong argument that every software-reliant physical system that creates a real-time simulation of itself and its environment is consciously aware of that simulation. Just as neuroscientists study consciousness in terms of the neural correlates of consciousness (NCC), software and system engineers will study artificial consciousness in terms of the corresponding cyber correlates of consciousness (CCC). The consciousness of our creations is not just an issue for engineers and academics. As our cyber-physical systems become more intelligent and pervasive, it is time for all of us to consider the social, ethical, and legal ramifications of their intelligence. To do less could have dire consequences.